D. Golovenko, B. Braeuning, P. Vyas, T. E. Haran, H. Rozenberg and Z. Shakked (2018). “New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins” Structure. 26(9):1237-1250
Vyas, I. Beno, Z. Xi, Y. Stein, D. Golovenko, N. Kessler, V. Rotter, Z. Shakked and T. E. Haran (2017). “Diverse p53/DNA binding modes expand the repertoire of p53 response elements”. PNAS 114, 10624-10629.
T. E. Haran, I. Cohen, A. Spassic . K. Yang, and U. Mohanty (2004). Characteristics of migration patterns of DNA oligomers in gels and its relationship to the question of intrinsic DNA bending. J. Amer. Chem. Soc.126, 2372-2377.
T. E. Haran, I. Cohen, A. Spassic . K. Yang, and U. Mohanty (2003). Dynamics of curved DNA molecules: prediction and experiment. J. Amer. Chem. Soc.125,11160-11161.
A. Merling, N. Sagaydakova and T. E. Haran (2003). A-tract polarity dominate the curvature in flanking sequences. Biochemistry42, 4978-4984.
A. Bareket-Samish, I. Cohen and T. E. Haran (2000). Signals for TBP/TATA box recognition. J. Mol. Biol.299, 965-977.
A. Bareket-Samish, I. Cohen and T. E. Haran (1998). Direct versus indirect readout in the interaction of the trp repressor with non-canonical binding sites J. Mol. Biol. 277, 1071-1080.
T. E. Haran (1998). Statistical and Structural Analysis of trp Binding Sites: Comparison of Natural and In Vitro Selected Sequences. J. Biomolec. Struc. Dyn.15, 689-701.
A. Bareket-Samish, I. Cohen and T. E. Haran.(1997). Repressor assembly at trp binding sites is dependent on the identity of the intervening dinucleotide between the binding half sites. J. Mol. Biol. 267, 103-117.
M. Shatzky-Schwartz, N. D. Arbuckle, M. Eisenstein, D. Rabinovich, A. Bareket-Samish, T. E. Haran, B. F. Luisi and Z. Shakked (1997). X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature J. Mol. Biol.267, 595-623.
T. E. Haran, J. D. Kahn and D. M. Crothers (1994). Sequence elements responsible for DNA Curvature. J. Mol. Biol.244, 135-143.
T. E. Haran and D. M. Crothers (1989). “Cooperativity in A-tract structure and the bending properties of composite TnAn blocks”. Biochemistry 28, 2763-2767.
T. E. Haran and D. M. Crothers (1988). “Phased psoralen cross links do not bend the DNA double helix”. Biochemistry 27, 6967-6971.
M. Eisenstein, H. Hope, T. E. Haran, F. Frolow, Z. Shakked and D. Rabinovich (1988). “Low temperature study of the A-DNA fragment d(GGGCGCCC)”. Acta Cryst.B44, 625-628.
D. Rabinovich, T. E. Haran, M. Eisenstein and Z. Shakked (1988). “The structure of the mismatched duplex d(GGGTGCCC) and one of its Watson-Crick analogs d(GGGCGCCC)”. J. Mol. Biol.200, 151-161.
T. E. Haran, Z. Shakked, A. H.-J. Wang and A. Rich (1987). “The crystal and molecular structure of d(CCCCGGGG): A new A-form variant with an extended backbone conformation”. J. Biomolec. Struc. Dynamics 5, 199-217.
T. E. Haran, Z. Berkovitch-Yellin and Z. Shakked (1984). “Base-stacking interactions in double-helical DNA structures: Experiment versus theory”. J. Biomolec. Struct. Dynamics2, 397-411.
T. E. Haran, A. Nudelman and Z. Shakked (1983). “Structural studies of intermediates in antibiotic synthesis. II. The structures of methoxyiminomalonic acid and its methyl and benzhydryl derivatives”. Acta Cryst.B39, 438-444.
T. E. Haran, A. Nudelman and Z. Shakked (1983). “Structural studies of intermediates in antibiotic synthesis I. The structures of penicillin sulfoxide rearrangement products: 2,3,5,6,-Tetrahydro-5-hydroxymethyl-6,6-dimethyl-1,3- dioxo-8-[(phenylacecyl)amino]-1H-imidazo[5,1-c][1,4] thiazine (I), C17H19N3O4S and 2,3,5,6,- Tetrahydro-5-hydroxymethyl-6,6-dimethyl-1,3-dioxo-8-[(phenylacecyl)amino]-1H-imidazo-[5,1-c][1,4] thiazine 5-carboxylic acid (II), C17H19N2O5S”. Acta Cryst. C39, 882-887.
A. Nudelman, T. E. Haran and Z. Shakked (1981). “Rearrangement of Penicillin Sulfoxide II. Spectral data and X-ray crystallography of the novel imidazo-[5,1-c][1,4] thiamine ring system” .J. Org. Chem. 46, 3026-3029.
Reviews
T. Stiewe and T. E. Haran (2018). “How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance”. Drug resistance updateupdates, 38, 27-43.