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ABSTRACT

TBP recognizes its target sites, TATA boxes, by
recognizing their sequence-dependent structure
and flexibility. Studying this mode of TATA-box
recognition, termed ‘indirect readout’, is important
for elucidating the binding mechanism in this
system, as well as for developing methods to
locate new binding sites in genomic DNA. We
determined the binding stability and TBP-induced
TATA-box bending for consensus-like TATA boxes.
In addition, we calculated the individual information
score of all studied sequences. We show that
various non-additive effects exist in TATA boxes,
dependent on their structural properties. By several
criterions, we divide TATA boxes to two main
groups. The first group contains sequences with
3–4 consecutive adenines. Sequences in this group
have a rigid context-independent cooperative
structure, best described by a nearest-neighbor
non-additive model. Sequences in the second
group have a flexible, context-dependent conforma-
tion, which cannot be described by an additive
model or by a nearest-neighbor non-additive model.
Classifying TATA boxes by these and other struc-
tural rules clarifies the different recognition path-
ways and binding mechanisms used by TBP upon
binding to different TATA boxes. We discuss the
structural and evolutionary sources of the difficul-
ties in predicting new binding sites by probabilistic
weight-matrix methods for proteins in which
indirect readout is dominant.

INTRODUCTION

The identity of eukaryotic cells is defined by the correct
temporal and spatial expression of specific genes. The first
step in the selective expression of any gene is the ability
to single it out from among all the others genes in

the genome. This ability, which lies at the heart of many
cellular processes, invariably requires the interactions of
proteins with DNA molecules. Protein–DNA interactions
proceed through an induced-fit mechanism, similar to
the induced-fit mechanism of enzyme action (1). Both the
DNA and the protein are not passive players, but have
active roles, dictated by their structural plasticity. The
ability of the DNA to deform upon interaction with
proteins (‘deformability’) is determined by the preferred
stacking interactions between adjacent base pairs (2) and
gives an indirectly recognized structural signature (3).
Sequence selectivity, in most sequence-specific DNA-
binding proteins, is based on direct hydrogen bonds
between amino acid residues and the donor and acceptor
groups primarily in the major groove of DNA [‘direct
readout’, (4)]. In addition, the sequence-dependent
features of intrinsic DNA structure and its deformability
contribute to specific recognition [‘indirect readout’, (3)].
In several specific protein/DNA complexes, DNA
conformation is used to the extreme case and there are
indications for interaction mainly through indirect read-
out. The TBP/TATA-box system is such a system (5–10).
The formation of the TBP/TATA-box complex is the
first step in the assembly of the preinitiation complex
on promoters of genes that are transcribed by RNA
polymerase II. TBP binds to an eight-base-pair segment of
DNA, which thus defines the core TATA box (5–10).
The TATA-box consensus sequence is T1-A2-T3-A4-W5-
A6-W7-R8 (W=A, T; R=A, G) (11,12). The crystal
structures of various TBP/TATA-box complexes show
that the formation of the complex results in a severe bend
of the DNA towards the major groove (80–1008), as
well as untwisting, which exposes a very wide and
shallow minor groove on its convex side where TBP
engages (5–10).
We have previously studied the indirect readout

mechanism of TATA-box recognition by TBP (13).
Based on this study, we proposed several possible signals
for TBP recognizing TATA boxes through indirect
readout: The first signal was the helical twist angle in
the middle of TATA boxes (base pairs 4 and 5, the only
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two base pairs with direct hydrogen bonds to the protein).
Second signal was the identity of base pairs 7 and 8 and
third, recognition of global DNA flexibility (13).
In TATA boxes containing alternating (T-A)n runs

(similar to the sequence of the AdE4 TATA box) binding
affinity and stability to TBP was recently shown to be
significantly dependent on the nature of the sequences
flanking the core TATA box (14). We suggested that this
is a novel form of indirect readout (14). The structure of
(T-A)n runs is polymorphic (15) and context dependent
(16). Consequently, this pliable structure can be altered
by the DNA structure at the flanking sequences, thereby
indirectly influencing the interaction with TBP. The
variability observed in TBP binding to E4-like TATA
boxes, as a function of changing the flanking sequences, is
comparable to that observed when the sequences within
the core TATA box itself are changed (14).
Indirect readout of DNA sequences can sometime

manifest itself through non-additivity effects in protein–
DNA interactions. By this it is meant that protein-binding
affinity cannot be accounted for by successive contribu-
tions from individual nucleotide pairs within the target
sequence. Such non-additivity has been observed in
several systems, notably the Mnt system (17) and the
EGR1 Zn-finger system (18). However, in both cases it
was concluded that the additive, mononucleotide-based
assumption, was good enough for most purposes (19).
Recently, O’Flanagan et al. (20) observed non-additive
effects in the TBP system, but in this study a theoretical
approach has been used to obtain binding-site data.
We study here the binding properties of TBP to all

consensus-like TATA boxes. We show that grouping
consensus-like TATA boxes by their structural properties
reveal differences in the indirect readout of these
TATA boxes by TBP, and in TBP-binding mechanism.
Statistical analysis indicate that TATA boxes that have
a context-independent cooperative structure are best
described by a nearest-neighbor non-additive model,
whereas TATA boxes that have a flexible context-
dependent conformation cannot be described by either
an additive model or by a nearest-neighbor non-additive
model.

MATERIAL AND METHODS

Protein

The c-terminal domain of yeast TBP (yTBPc) was a kind
gift from S. Juo (Yale University). The overexpression
and purification of the protein were as described by
Kim et al. (5). The fraction of yTBPc active for DNA
binding was determined as previously described (13) and
found to be 50%.

DNA

All TATA-box variants in this study were chemically
synthesized on an automated DNA synthesizer at the
Keck Foundation Resource Laboratory (Yale University)
or by Sigma Genosys (Israel), and purified using stan-
dard protocols (21). TATA-box variants for dissociation
kinetics experiments were chemically synthesized as

hairpin constructs with 20-base-pair (bp) double-stranded
stems and five cytosines in the loop (Table 1). TATA-box
variants for phasing analysis were chemically synthesized
as linear duplexes 21-bp long. They are identical in
sequence to the stem of the hairpin variants except for
an additional T at the 50 side, used to create an AvaI site
for cloning the fragments as described previously (13).
These linear duplexes were also used as specific competi-
tors in the dissociation kinetics experiments.

Dissociation kinetics experiments

Radiolabeled hairpin duplexes (0.4 nM) and yTBPc
(27 nM active protein) were incubated for 60min at 308C
in the binding buffer before adding unlabeled 21-bp linear
duplex competitor of the same DNA sequence (1.76 mM,
65-fold excess of the cold competitor over active protein
and 4400-fold over labeled DNA targets). We used these
experimental conditions to concur with those of our
previous study (13). The rational for using short hairpin
duplexes as DNA targets and short linear duplexes as
DNA competitors was previously described (13). At the
time points indicated in Figures 2 and 4, samples were
removed and immediately frozen in liquid nitrogen (22).
After the final time point, the samples were thawed and
immediately loaded on native gels (10%, acrylamide/
bisacrylamide ratio 75:1, 10% glycerol) while the gels were
running. The gels were run at 450V and 308C, in a
running buffer containing 0.5� TG (25mM Tris.HCl,
190mM Glycine, pH 8.3) and 5mM MgAc, until the BPB
dye migrated 5.5 cm.

Phasing analysis

yTBPc-induced DNA bending was analyzed by phasing
analysis using radiolabeled DNA targets, 569–579 bp long,
as previously described (13). These DNA probes (0.4 nM)
were incubated with 25–200 nM yTBPc for 60min at 308C.
The relative mobilities of the complexes were analyzed
on native gels (6%, acrylamide/bisacrylamide 75:1, 10%
glycerol). Gels were run at 450V and 308C, in a running
buffer containing 0.5� TG (25mM Tris.HCl, 190mM
Glycine, pH 8.3) and 5mM MgAc, until the XC dye
migrated 12 cm.

Analysis of dissociation kinetics experiments

All gels were dried and quantified using a Fujii Bas-1000
phosphoimager. For the analysis of the kinetic experi-
ments, boxes were defined surrounding each band on the
gel. To account for dissociation of the complex during
electrophoresis, the band corresponding to the protein/
DNA complex was defined as extending from its
main band to the free-DNA band (23). A similar box in
a lane containing the unbound target only defined
the background. The fractions of bound DNA at the
different time points, F(t), were calculated from the
equation: F(t)= (PSL� bg)complex(t)/[(PSL� bg) complex(t)

+ (PSL� bg)free(t)], where PSL is the photostimulated
luminescence and bg is the background. ln[F(t)/F(0)] was
plotted as a function of time (t) after the addition of the
unlabeled competitor.
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The data was analyzed by a two-phase first-order
kinetic equation: FðtÞ=Fð0Þ ¼ Ae�k

A
t þ Be�k

B
t, where

A and B are fractions of molecules dissociating with rate
constants kA and kB, respectively. Half-life of complexes
dissociating by A and B processes were calculated from:
t1/2A=ln2/kA and t1/2B=ln2/kB.

Structural analysis

Analysis to determine the local helical parameters in
crystal structures of TBP/TATA-box complexes was
carried out using the web version of 3-DNA (24).
However, in structures containing Hoogsteen base pairs
this analysis yielded erroneous parameters. These struc-
tures were then analyzed using curves (25).

Statistical analysis of TATA boxes

We have downloaded from the eukaryotic promoter
database [EPD, (26,27)] sequences corresponding to
the degenerate consensus sequence YWTAWADN. This
consensus sequence corresponds to all TATA-box variants
that appear with at least moderate frequency (410%)
in eukaryotic promoters, according to the TATA-box
consensus of Bucher (12). We have filtered the sequences
to exclude unidentified preliminary bulk sequences
(as defined in the EPD, i.e. sequences with the ‘OS_bA’
identifier), and those derived from high-throughput
studies, which cannot be assigned to a defined homology
group. We define a homology group, as in the EPD, as
sequence similarity due to common phylogenetic origin.
In the EPD, and here, two promoters are considered
homologous if they exhibit 450% sequence similarity
between �79 and +20. However, as the definition of
homologous promoters is based only on similarity of
DNA sequence in the promoter region, they can be either
orthologs or paralogs. We then deleted from each set
multiple sequences coming from the same homology

group, as well as TATA boxes in the transcribed region.
Thus, the dataset now corresponds to a representative set
of not closely related promoters. Similarly, we down-
loaded sequences corresponding to the more restricted
consensus sequences, YWTATADN and YWTAAADN.
All datasets were aligned by the program MEME (28),
using only the one strand given in the EPD.

From the YWTAWADN dataset (457 sequences) we
constructed mononucleotide position-specific weight
matrices whose elements are the log-odds weights:

wlB ¼ � ln
flB
PB

� �

where flB is the observed frequency of each base B in
position l of the binding site, and PB is the frequency in the
whole genome (29). PB is taken here to be 0.25 for each
base. These matrix elements are a maximum probability
estimate for the binding energy contribution of each base
at each position, assuming that each position contributes
independently to the total binding energy (29). The base
frequencies are corrected here for small sample errors
as described by Berg and von Hippel (30). To score
individual sequences, the weight matrix is multiplied by
a matrix (slB) containing only 0’s and 1’s, corresponding
to sequences for which binding data was experimentally
determined in this study. The summation of this multi-
plication yields an individual information score for each
sequence (20,29):

wmðsÞ ¼
Xs

l¼1

X
B

wlBslB þ C0

To the summation we add a constant (C0), chosen such
that the best binding site scores zero and poorer sites score
positively.

To test for nearest-neighbor non-additive effects we
need to calculate dinucleotide information scores, for
which we need to add to mononucleotide information
scores the following term (20,31):

�
Xs�1

l¼1

X
B

ln
flB,lþ1Blþ1

flB flþ1Blþ1

� �

where the numerator is the observed frequencies of the
doublet BlBl+1 in positions l and l+1 and the denomi-
nator is the observed frequencies of its monomeric
components. Here again a constant is added to each
result to make the score of the best binder zero.

We have also calculated the Z statistics of tetranucleo-
tide motifs at position 6–9 in TATA boxes. It is calculated
by subtracting from the observed number of occur-
rences of each motif the expected number of occurrences
based on the mononucleotide frequency of the compo-
nent base pairs, and then dividing this value by the
expected SD (31).

In testing the strength of relationships between
variables, we calculated Spearman’s rank correlation
coefficient (denoted by �) as a non-parametric measure
of correlation (32).
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Figure 1. Phasing analysis of yTBPc-induced TATA-box bending.
Shown are the relative mobilities of the bound DNA divided by the
relative mobilities of the free DNA as a function of the linker length.
The values shown are of one representative experiment (of 3–4
independent experiments). The line is from the best fit to a cosine
function (44).
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RESULTS AND DISCUSSION

Differential DNA flexibility divides the TATA boxes
to two unique groups

We have grouped the ten TATA boxes studied here to two
groups. The first group contains sequences that resemble
the Adeno virus major late promoter (MLP) sequence,
TATAAAAG (Table 1). All sequences in this group have
a central A4-A5 step. The second group contains sequences
that resemble the Adeno virus E4 promoter, TATATATA
(Table 1). All sequences in this group have a central A4-T5

step. Initially, we made this division based on our previous
observations (13) that TATA boxes having a central A4-
A5 step have higher twist angle (around 138) than
TATA boxes with a central A4-T5 step (around 38), even
though both angles are untwisted relative to the canonical
value, which is 348 for generic B-DNA in solution (33).
This observation is still valid, but is less distinctive, when
we analyze co-crystal structures corresponding to the
present ten sequences (Table 1). The average twist angle at
the central A4-A5 position in TBP/DNA complexes
identical to those of group I (pdb codes: 1qne or 1cdw
for MLP; 1ngm for A8, 1qn4 for T8 and 1qnb for T7) is
118� 28, whereas the A4-T5 twist angle in TBP/DNA
complexes corresponding to group II sequences (pdb
codes: 1qn7 for T5; 1tgh for (TA)4; and 1yth for T5A8) is
68� 28.

Looking at Table 1, we observe that sequences
belonging to group I all harbor an A-tract, defined as a
DNA region consisting of four or more A’s in a row (34).
T7A8 and T7 have only an A3-tract, but it has been shown
that AxTy tracts have similar structural properties to An

tracts [x+ y= n� 4, (35,36)]. A-tracts are known to
adopt a dominant unique structure, distinct from that of
generic B-DNA (37), which is invariant and sequence-
context independent (38,39). A-tract may even confer
unique structural properties to sequence adjacent to them
(40). On the other hand, alternating (T-A)n runs are
known to be a conformationally flexible DNA element,
relative to B-DNA in general and A-tracts in particular
(39,41,42). Thus, the sequences of group I have on the
whole a more rigid DNA structure than those of group II.
This suggestion is supported by looking at variability in
roll angle, between same steps in different structures,
especially the steps at positions 4/5 and 5/6. Roll angle at
the 4/5 position vary between 23.58� 0.68, for group I and
268� 38, for group II. At the 5/6 position the variability is
238� 18, for group I and 228� 58, for group II. Thus,
the variability in roll angle at these positions is 5-fold
larger for group II sequences than those of group I
sequences (compare the SD values of group I to those of
group II, i.e. 0.68 to 38 and 18 to 58). Moreover, the average
deviation of the roll angle along any one crystal structure
corresponding to those studied here is also larger for
sequences of group II than those of group I, 13.2� 0.58
for group II, versus 12.1� 0.18 for group I. Large roll
fluctuations are commonly associated with conforma-
tional flexibility.

Packer et al. (39) have argued that when DNA bending is
non-planar, such as in the nucleosome (43) and in the TBP/
TATA-box complex (5–10), the bending motion requires

shearing by slide and shift, in addition to utilizing changes in
roll, tilt and twist, and that slide and shift are better studied
on the tetranucleotide level. We have used the values given
by Packer et al. (39) for the flexibility of tetranucleotides
with respect to slide, to compare group I to II. We calculated
the flexibility with respect to slide of the ten sequences
studied here by summing the components tetranucleotides in
a sliding window along the core 8-bp of each sequence. We
then averaged the values from each 5-sequence group.
Group I has average flexibility of 71� 7KJ/mol Å2, whereas
group II has an average flexibility of 35� 7KJ/mol Å2.
Thus, group I is significantly more rigid than group II, also
with respect to slide.

TBP-induced TATA-box bending

We measured the bend angles induced on TATA boxes
upon binding of yTBPc (Figure 1) by phasing analysis
(13,23,44,45). The results (Table 1) show that when we
divide the set to two groups (MLP-like versus E4-like),
we can arrange the sequences within each group with the
same order of base-pair steps at position 7/8, going from
complexes with a large induced bend angle to complexes
with smaller bend angles. In both groups sequences with
the A7-G8 step harbors the largest TBP-induced bend
angle, followed by T-A, A-A, A-T and T-G, spanning the
range from 76 (�4)8 for TATATAAG to 43 (�4)8 for
TATATATG (Table 1). Thus, the bend angles induced
on the TATA box by TBP binding are not only sequence
dependent (13,46), but they depend only on the identity
of the dinucleotide at position 7/8.
These results are similar to those obtained in the

study of Wu et al. (46) who measured the solution bend
angles for TBP complexes with different AdMLP-related
TATA-box variants, using fluorescence resonance energy
transfer (FRET). The values of the bend angles in the
study of Wu et al. (46) ranged from 768 for the complex of
TBP with MLP to 308 for the complex of TBP with an A3

variant (TAAAAAAG). These results contrast with the
crystallographic study of Patikoglou et al. (10), who
observed a similar structure of the wild-type TBP
complexes with eleven naturally occurring variants of
the AdMLP, including the T7 and T8 sequences. Two
different explanations are possible for this discrepancy.
First, the difference may be due, at least partly, to the
writhed DNA structure observed in the crystalline state, as
discussed in (13). Variations in electrophoretic mobility,
between DNA fragments of the same length, are related
to differences in the mean square end-to-end distance of
the molecules. Bend angles derived from phasing analysis,
or from FRET measurements, are 2D entities, determined
from the differences in mobility between the cis and trans
isomers, or distance differences between the 50-dye and
the 30-dye. Therefore, the difference between the crystal-
lographic and solution results may thus be partly
attributed to the difference in the outcome of projecting
a 3D curve onto a 2D plane in the two methods. However,
no sequence-dependent differences in writhe have been
observed in the crystallographic studies (5–10). Second, it
has been shown by Wu et al. (47) that the osmolytes used
to crystallize TBP/TATA-box complexes increase the
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bend angle of the DNA in the complex to the bend angle
observed in the crystalline structures. The data presented
here support this option and points to the last base-pair
step, position 7–8, as the origin of the sequence-dependent
pattern.

Differential biphasic dissociation kinetic behavior
and mechanism of TBP binding

We have determined the rate of dissociation of yTBPc
from all variants studied here by gel electrophoresis
(Figure 2), as previously described (13). However, we
could not fit well the data of two of the variants (T7 and
T8) to a one-phase dissociation equation, as in our
previous study (13). Hence, we analyzed these two
variants by a two-phase kinetic equation (Figure 3).
Consequently, we have also re-analyzed the remaining
data by a two-phase kinetic equation (Figure 3). This
analysis shows (Table 1) that for all variants there are
two macroscopic dissociation processes occurring simul-
taneously—a fast process (termed ‘A’ in Table 1), which is
poorly defined in terms of a rate constant (ranging
approximately between 7 and 20min for different TATA
boxes, but with a curve-fitting error of the same
magnitude or larger in some cases), and a slow process
(termed ‘B’ in Table 1), with a low curve-fitting error.
However, whereas in all variants except T7 and T8 the
molecules mainly undergo the slow process (�80%), for
the T7 and T8 variants the picture is different. A significant
part of T7 and T8 molecules undergo mainly the fast
process (�75%).
There are a priori two likely interpretations for the

observed behavior. First, the two events could arise from
dissociation from non-specific DNA versus dissociation
from the TATA box (48). According to this hypothesis the
T7 and T8 variants have very low sequence specificities,

and thus dissociation from the TATA-box region of the
T7 and T8 variants and dissociation from the sequence
flanking them has similar (and short) half-life. Second
possible explanation is that the kinetics of dissociation
could proceeds through a complex mechanism with
several intermediates (49–52). Parkhurst et al. (50)
proposed that these intermediates are different intercala-
tion states of TBP on TATA boxes.

A8
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Figure 2. Dissociation kinetics of yTBPc (27 nM) from consensus-like TATA-box variants embedded in hairpin constructs (0.4 nM). The number
below each gel denotes the time after adding competitor DNA (1.76 mM).
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Figure 3. Plot of the fraction of molecules bound to consensus-like
TATA-box variants at time (t) divided by the fraction of molecules
bound at time zero is plotted as a function of time. The lines are
from the best fit to a double exponential curve. Solid squares, MLP;
solid circles, T7A8; solid down triangles, A8; solid up triangles, T8; solid
diamonds, T7; open squares, T5; open circles, (TA)4; open down
triangles, T5A8, open up triangles, T5T8; open diamonds, T5T7.
The shown experimental points are those from only one experiment,
out of 3–6 independent experiments conducted with each DNA target.
Hence, they may deviate slightly from the averaged values presented
in Table 1.
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To differentiate between these two possibilities, we have
studied TATA-box variants with methylated cytosines in
their flanking sequences. If the different biphasic behavior
observed for the T7 and T8 variants are due to dissociation
from specific sequences (core TATA box) versus non-
specific sequences (the flanking sequences), i.e. if there is
sliding of TBP on the TATA box prior to dissociation
(48), then we would expect different behavior of methy-
lated and unmethylated targets, because we expect that
methyl groups, being a bulky side group on cytosine
residues, will inhibit this lateral movement by TBP, or else
that the methyl group on the flanking sequences will
inhibit binding of TBP to these regions. However, if the
biphasic behavior of the T7 and T8 variants is due to
different dissociation events from the TATA box itself,
then we would expect similar dissociation behavior of
methylated and unmethylated sequences. To address these
issues we have studied two representative TATA-box
variants, MLP and T7, embedded within sequences with
methylated cytosines in the region upstream and down-
stream to the TATA box (Figure 4). MLP represents the
TATA-box variants that undergo mainly the slow process,
whereas T7 represents the variants that undergo mainly
the fast process.

Figure 4 shows the results of dissociation kinetic
experiments using methylated T7 and MLP TATA-box
variants. Analysis by a two phase kinetic equation (Figure
5) shows that the stability of yTBPc complexes with
methylated and unmethylated sequences is similar for the
T7 variants (123� 4 and 110� 5min, respectively) as
well as for the MLP variants (267� 17 and 255� 24min,
respectively). The fraction of molecules undergoing the
slow process did not change significantly upon methyla-
tion (29� 2% of the methylated T7 and 25� 3% of
the unmethylated T7 variants; 72� 5% for the methylated
MLP and 83� 3% for the unmethylated MLP
sequences). These results indicate no significant difference
between the dissociation kinetic behavior of yTBPc
complexes with regular TATA boxes versus with
TATA boxes containing methylated cytosines in their
flanking sequences. Thus, we can conclude that the two
processes are dissociation events from complexes having
different intercalation states.
Powell et al. (51) suggested that the overall energy

profile for the reaction between either AdMLP or AdE4
with yTBP is similar, but that they are composed of
different energetic intermediates. Both binding events are
composed of three distinct steps, of which the initial step
is the interaction of the similar 50 TATA part of the
TATA box with yTBP, i.e. binding, bending and insertion
of the 50 phenylalanines from the stirrup loops between
nucleotides T1 and A2. In the AdE4 target, the next step is
ordering of the flexible T-A steps, and intercalation of
the second phenylalanine pair between the nucleotides
at position 7 and 8 (51). The interaction is basically over
before the final step, which consists of further structural
and energetic adjustments. In the more rigid AdMLP
target, the second step is not as facile, and thus the
intercalation step is delayed until the final step (51).
We suggest that this overall view is in accord with the

results obtained with our extended set of TATA boxes,
which are all either MLP-like or E4-like (Table 1).
We propose that in group I, the second intercalation
event is delayed relative to that in group II. Thus, when
the equilibrium TBP/TATA-box mixture is challenged
with a large excess of competitor DNA the members of
group I that are bound with the least binding stability
(T7 and T8), will be found to a larger extent stuck
at the second step of the binding reaction. Hence, these
sequences will not have the second pair of phenylalanine
intercalated at the 30-side of the TATA box, and as

CGGGMTATAAAAGGGGGTGG
GMMCGATATTTTCMMCMAMC

CGGGMTATAAATGGGGGTGG
GMMCGATATTTACMMCMAMC
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Figure 4. Dissociation kinetics experiments using methylated DNA targets. Left: double-stranded stem of DNA hairpin containing the MLP target
with methylated cytosine residues (denoted by M). Right: stem of DNA hairpin containing the T7 target with methylated cytosine residues. For other
details see Figure 2.
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Figure 5. Comparison between the dissociation kinetics of yTBPc from
methylated and non-methylated TATA boxes. Fraction of yTBPc
molecules bound at time (t) divided by the fraction of molecules bound
at time (0) is plotted as a function of time. Solid squares, MLP; open
squares, methylated MLP; solid circles, T7; open circles, methylated T7.
For other details see Figure 3.
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a result a larger percentage of these complexes
dissociate fast.

The two TATA-box groups show different correlations
between binding stability and structural properties

Within the group of MLP-like TATA boxes (group I)
the values of the dissociation half-life and the global
bending induced by TBP binding are correlated to each
other (Table 1). The TBP/MLP complex is the complex
with the longest half-life, and it is also the one with the
highest DNA bend induced by the binding of TBP. This
trend is followed for the rest of group I sequences
(�=1). This is similar to the relationship found by
Starr et al. (53). On the other hand, no correlation
between global induced TATA-box bending and half-life
of the complex with TBP is observed in E4-like
TATA boxes (group II, �=0.1). However, in group
II other structural correlations emerge. First, there is a
correlation (�=0.9) between binding stability and
dinucleotide flexibility with respect to slide, when we
use parameters taken from the study of Packer et al.
(54). Here the most rigid dinucleotide (A-A) forms the
most stable complex with TBP, and the most
flexible dinucleotide (T-G) forms the weakest complex.
Similarly, a strong correlation is observed between the
conformational energy of tetranucleotides at position
6–9 and binding stability for group II sequences (�=1),
but no such correlation is found for group I sequences
(�=0.2), when we use parameters taken from the study
of Packer et al. (39). In group II tetranucleotides
with the lowest conformational energy (minimized with
respect to all six base-pair step parameters for the
central dinucleotide) form the most stable complexes
with TBP. This correlation holds for group II sequences
also when we sum the minimal tetranucleotide con-
formational energy along the entire sequence of each of
our target sites, including the flanking sequences (�=1).
Since sequences in group II are on the whole more

flexible than canonical B-DNA, and in particular more
flexible relative to group I, it is logical that binding
stability correlates with lower conformational energy,
as well as with more rigid sequences with respect to slide.
In group I, the sequences are on the whole more rigid.
After the first intercalation event TBP needs very little
re-orientation for the second intercalation event, and
thus the binding stability correlates with the ability to
intercalate into the dinucleotide at position 7/8. Thus, the
most stable binder is also the most bent one, which
probably forms the most intimate interface. However,
sequences in group II being highly flexible, and thus found
in a variety of conformations, need a firm anchor to grip
to after the first intercalation event, for the second
intercalation event to occur, since they may not be rightly
oriented at that step, and thus the most rigid sequence,
that with the AAA tract is the most stable binder. Hence,
in this more flexible group the correlation is between
rigidity (relative to other group members) and binding
stability.

Nearest-neighbor interaction versus long-range effects
in TATA-boxes

Berg and von-Hippel (30,31) were the first to link between
the statistics of binding sites occurrences and their binding
free energy. In group I we see such correlations, both at
the 8-bp level as well as on the dinucleotide level (Table 1).
Binding stability is correlated with the number of
occurrences of the 8-bp core TATA box in the EPD
(�=1), as well as the frequency of occurrence in EPD of
dinucleotides at position 7/8 in A4-A5-containing
TATA boxes (�=0.9). No such correlation is observed
among group II sequences. Moreover, we have calculated
an informational theoretical weight matrix from sequences
that conform to the YWTAWADN consensus. The matrix
elements are the log-odds ratio per base pair and per
position. This degenerate consensus sequence includes all
high and moderate probability mononucleotide combina-
tions appearing in the base frequency table of Bucher (12).
There are 457 such sequences in the EPD, when we take
only identified sequences belonging to known homology
groups, and we take only one sequence per homology
group, i.e. only sequences that are not from closely related
promoters (see Material and Methods section for details).

The matrix elements are the maximum probability
estimate for the binding energy contribution of each base
at each position, when we assume that each position
contributes independently to the total binding energy (29).
The sum of the dot product between this matrix and
a matrix (containing only 0’s and 1’s as its elements)
corresponding to a sequence studied here gives an
informational score for that sequence, which is the
calculated total binding energy for that sequence (29).
If the additivity assumption holds true for the studied
binding sites the informational score for these sequences
should correlate with their measured binding affinity.
When we have indications for non-additivity in protein–
DNA interactions, we can correct for nearest-neighbor
interactions by calculating the dinucleotide information
score for these sequences (31). This is done by adding
to the term based on independent mononucleotide
contributions a term that takes into account doublet
correlations (20,31).

We have measured the binding stability of ten
TATA boxes to yTBPc, and not the binding affinity,
which is the more direct measure of the binding free
energy. However, Hoopes et al. (55) found a direct
correlation between binding affinity and binding stability
for yTBP. Based on their experimental results, Hoopes
et al. (55) concluded that the primary difference among
TBP/TATA-box complexes is the dissociation rate, and
that the difference in association rate between various
yTBPc/TATA-boxes complexes is small. These results
are in accord with the study by Grove et al. (56). Grove
et al. (56) found that increased affinity of yTBP to
TATA boxes that are more flexible, because of various
sequence mismatches or because of various replacements
of T with 5-hydroxymethyluracil, is due almost exclusively
to an increase in complex stability rather than in the rate
of complex formation. In addition, Starr et al. (53) found
that the binding kinetics determined for yTBP, paralleled
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those for yTBPc. In Table 1, we present the mononucleo-
tide and dinucleotide information scores for each of the
sequences studies here. When we calculate the rank-order
correlation coefficient, we observe that at the mono-
nucleotide level there is no link between the measured
binding stability and the individual information score of
the 10 sequences studied here (�=0.16). When we look at
each group of five sequences separately, we find a very
weak correlation between the binding stability of group I
members and their individual mononucleotide informa-
tion score (�=0.5), and no such correlation among group
II members (�=0.2). If we include a nearest-neighbor
doublet correlation term in the individual information
score, the overall correlation among all 10 sequences
is still very weak (�=0.48). However, among group I
members the correlation is now very high (�=0.9),
whereas for group II sequences no correlation is found
(�=0.2). We suggest that this behavior is due to the
different structural properties of the two groups. Group I
sequences all have A-tracts in them, a known cooperative-
built structural unit that forms in sequences of the form
An or AxTy [n� 4, x+ y= n, (34,35,36,38)]. Thus, the
non-additivity in group I is due to the presence of
cooperative A-tract motifs in these sequences. Berg and
von Hippel (31) suggested that non-additivity will be
observed above the scatter in the calculated and experi-
mental binding energy only if at least half of the binding
site is involved in the non-additive effect. In our case, the
A-tract motifs are 4-bp long, and thus comprise half of
the 8-bp core TATA box.

A different long-range cooperative structure exists in
group II sequences. Here it is the cooperative structure of
the flanking sequences that determines the structure in the
core sequences (14). Thus, the non-additivity in group II is
of different origin than that of group I. In group II
sequences we have non-additivity, but it is not influenced
by nearest-neighbor interactions within the TATA box,
but instead stems from the effects of the flanking
sequences on the core TATA box. Thus, no correlation
is found between binding stability and individual informa-
tion score that is based on weight matrices build from
probability of occurrences of either mononucleotides or
dinucleotides in TATA boxes (see further discussion
below).

Long-range correlations and TBP-induced bend angles

We have calculated the Z statistics for tetranucleotides at
position 6–9 from the dataset of sequences of the form
YWTAWADN. It measures the deviation of the observed
tetranucleotide motif from that expected based on additive
mononucleotides. Shorter sequence motifs appear both
in the MLP-like sequences as well as in the E4-like group.
Hence, calculating the Z statistics of motifs shorter than
tetranucleotide is biased by the higher occurrence of
MLP-like sequences relative to E4-like sequences in
eukaryotic genomes (�2:1 ratio). In Table 1 it can be
observed that there is a relationship between the Z
statistics for the tetranucleotide at position 6–9 and the
bend angle induced on TATA boxes by TBP binding
in both groups. Larger induced bend angles (63–768) are

linked to tetranucleotides with positive Z-score, whereas
those with smaller bend angles (43–538) have negative
Z-scores. This indicates that the latter sequences appear
in natural sequences less than their mononucleotide
occurrences, i.e. that they are being avoided in natural
promoters. This may mean that TATA boxes in which
TBP induces smaller bend angles are avoided in natural
sequences regardless of the binding stability in complexes
with TBP. Since the homology groups, as defined in the
EPD and used here, are related to the DNA sequence of
the promoter only, and not to its attached gene, it is
impossible at this point to deduce whether this property is
observed when looking across phylogenetic trees, namely,
whether an alternative explanation to these observations is
that sequences that incur small bend angle are selected for
this property (or a related one) and are equally well
conserved but are used less frequently.

TATA-box evolution and implications for locating
new binding sites in genomic DNA

Specificity is not maximized in evolution. Instead, as Berg
and von-Hippel suggested (31), evolution minimizes the
maximum loss of specificity. Thus, specificity will tend
towards a situation where mutational drift have relatively
small effects. Hence, if we take a dataset of strong TATA
boxes, such as that composed of the sequences conforming
to the YWTAWADN consensus, we do get a correlation
to binding stability, when we calculate the individual
information score for sequences having the context-
independent A-tract motif in them, or when we simply
take the 8-bp occurrences of these sequences in the EPD,
as expected based on the statistical–mechanical selection
theory of Berg and von Hippel (31) (Table 1). This is not
the case when we look at sequences containing a flexible
context-dependent (A-T)n motif. There are some indica-
tions that E4-like TATA boxes may be more sensitive to
base changes within the core TATA box. First, they are
more sensitive to base changes at position 7 and 8, as can
be observed from the half-life in Table 1. Second, the
change of T3 to A3 has larger effect (greater reduction in
binding stability) going from TATATAAG to TAAAT
AAG, than from TATAAAAG to TAAAAAAG (53).
However, in addition to the sensitivity to mutation within
the TATA box, E4-like TATA boxes are sensitive to base
changes in the sequences flanking them. Only in these
sequences the role played by the flanking sequences in
determining the structure of the core TATA box is
dominant (14). Thus, E4-like TATA boxes are probably
more sensitive to mutational errors than MLP-like TATA
boxes, if only for the extended DNA region in which
mutations can have an effect on TBP binding This may be
the reason why evolution did not select these binding sites
to be strong promoters, even though TBP can form very
stable complexes with such sites, and in optimal sequence
context TBP can form stronger complexes to these sites,
than those it forms with the known strong basal promoter
MLP. An additional structural rational why evolution
did not frequently select E4-like sequences to be strong
TBP-binding targets may be that stated in our previous
publication (14). The pliability of E4-like sequences
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makes it quite easy to modulate their binding properties
using their flanking sequences, whereas for the MLP
TATA box these changes are not possible, and it is
invariably a strong binding site. Thus, one can extend the
specificity of TBP/TATA-box interaction by the use of
flanking sequences of certain TATA boxes only.
For proteins that recognize their target sites mostly or

exclusively by indirect readout, as is the case with TBP,
mononucleotide weight-matrix methods do not work well
in locating new binding sites. Including nearest-neighbor
doublet correlation does significantly improve the correla-
tion to binding free energy. However, as observed here,
this is true only for sequences in which non-additivity is
local. Sequences, in which non-additivity is of longer
range than successive base pairs, are not represented
well by probabilistic methods based on frequency of
occurrence of base pairs in genomic DNA. For such
sequences, we need to use methods that are based on
experimental data on binding-site strength, which may
soon be available more easily from high-throughput
studies (57–59).
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